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altered when interacting elements are placed in 3 dimensions. Inter-
action, or interference, refers to changes in the perceptibility or
appearance of stimuli that occur when placed in close spatial proximity
to other stimuli., These interactions, which are known to influence the
processing of information in visual displays, have been studied exten-
sively in the 2-dimensional case, The extension to 3 dimensions, how-
ever, has been limited by technical problems associated with manipulation
of stimuli simultaneously in X, Y, and Z axes.

The project overcame these limitations by using, as interacting stim-
uli, stereoscopic forms generated from random element stereograms. This
permitted facile manipulation of stimuli in stereoscopic space without
introducing potentially confounding changes in proximal stimulation. The
interactive phenomena investigated were: (1) destructive interactions
(threshold elevation) under transient threshold level conditions; (2) de-
structive-interactions under suprathreshold conditions, (3) distortive
interactions (changes in apparent length) under suprathreshold conditions,
and (4) interactions imposed by the geometry of 3-dimensional space.

The major findings were as follows: (a) Separating the interacting
stimuli in depth substantially modified their interaction; When a test
stimulus was in a depth plane in front of inducing stimuli and closer to
the observer, interaction declined as a monotonic function of the differ-
ence in depth separation between test and inducing stimuli. When depth
positions were reversed and the test stimulus appeared in a depth plane
behind the inducing stimuli and farther from the observer, the magnitude
of the interaction tended to increase. This asymmetrical effect of depth
position, which has been termed the "front effect", applied to both thresh-
old and suprathreshold destructive interactions and to suprathreshold dis-
tortive interactions.

(b) The vertical dimension of stereoscopic visual space is tilted
away from the observer., This tilt produces a difference in the threshold
level perceptibility of stimuli above and below the horizontal line of
fixation. Stimuli located above horizontal fixation and in crossed dis-
parity had lower thresholds than those below fixation. This bias could
be reversed by physical tilt of the stereoscopic display, and it did not
alter suprathreshold characteristics of the stimuli.

Implications of these data for models of visual space and for the
processing of information from 3-dimersional displays are discussed in
the reports and papers summarized in this report.
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This Final Report describes work completed under the support of Contract
N00014-76-C-1101, work unit number NR197-036, between Vanderbilt Univer-
sity and the Engineering Psychology Program, Office of Naval Research.
The contract was initiated on September 20, 1976 and was completed on
April 30, 1981.1

Contour Interaction in Visual Space

Introduction

As the title indicates, this project investigated the interaction of
visual stimuli as a function of their location in 3-dimensional space.
Interaction is a general term referring to perceived changes in the at-
tributes of a stimulus induced by adjacent stimuli which provide a con-
text for it. These interactions can be destructive as manifested by a
reduction in perceptibility of the stimulus at both the threshold and
suprathreshold levels, or interactions can be distortive as manifested
by changes in the apparent size or shape of a stimulus. One example of
destructive interference is the phenomenon of visual masking, character-
ized by an elevation in the threshold of a transient stimulus when it is
closely coupled in space or time with a second stimulus. Many examples
of distortive interaction are provided by the geometric visual illusions.
These kinds of interactive phenomena, which significantly influence the
processing of information from visual displays, have been investigated
extensively over the years. Yet almost all investigations have been
confined to two dimensions in which the interacting stimuli are varied
in X and Y axes while the Z-axis or depth dimension remains the same for
all stimuli.

But there are some data and theory that suggest such interactions
can be substantially changed or modified when the stimuli are in three
dimensions, i.e., their Z-axis value varied. Furthermore, there is
reason to believe that 3-dimensional space itself can exert a distorting
influence on all stimuli within it. These effects would clearly influ-
ence the processing of visual information from stereoscopic displays.
But their systematic investigation has been retarded by the difficulty
involved in placing interacting contours in three dimensions without
introducing confounding cues.

That difficulty was overcome in this project through application of
a new technique for generating stereoscopic displays. Using that tech-
nique, the project investigated interaction of multiple contours in space
and time at threshold and suprathreshold levels as a function of their
loci in 3 dimensions.

General Approach

The key feature of the experimental method was the presentation of
interacting stimuli as stereoscopic figures formed from dynamic random

element stereograms. These stereograms consist of matrices of randomly
ordered elements that contain no discernible contours when viewed under
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nonstereoscopic conditions. When viewed under stereoscopic conditions,
however, clear-cut stereoscopic forms at different positions in depth
can readily be seen. The stereoscopic forms arise at a central stage
within the visual system and do not engage peripheral stages (i.e., the
retina). This feature permits changes in stimulus position and configu-U ration to be made without introducing confounding changes in peripheral
stimulation. In dynamic versions of the stereograms, all elements are
randomly replaced many times a second; this rapid replacement provides a
kind of camouflage which permits stereoscopic stimuli to be moved about
in space and quickly presented without introducing nonstereoscopic cues.

The initial applications of dynamic random element stereograms were
severely restricted by the expensive and cumbersome cinemagraphic and
computer techniques necessary for their production. But recent advances

a in electronics have made it possible to generate stereograms using self-
I contained portable hardwired electronic devices. Such a system for stereo-

gram generation has been developed at Vanderbilt and is part of an ongoing
development program. A number of systems, varying in sophistication, have
been devised. A description of one system is given in Shetty, Brodersen,
and Fox (1979a, b).

All versions of the systems use as display devices modified videoIcolor receivers. These provide for the generation of red and green dot
matrices, which when viewed through appropriate red and green filters,

* fulfill the requirements for stereoscopic viewing (i.e., the anaglyph
* method of stereoscopic presentation). Almost any conceivable physical

form can be presented as a stereoscopic form by means of an optical pro-
gramming device that acts to convert physical forms scanned by the device
into their stereoscopic counterpart. Parameters of the stereoscopic form
such as disparity magnitude and direction, position in X-Y coordinates,
and exposure duration, can be quickly changed by the stereogram generation
system. This flexibility allows the same rigorous psychophysical method-
ology used for conventional stimuli to be applied to stereoscopic stimuli.

Although stereoscopic stimuli arise from a central stage within the
visual system, they are functionally equivalent in many ways to conven-
tional physical stimuli defined by changes in luminance. For instance,
stereoscopic contours can induce eye movements, aftereffects, and visual1 illusions. Some question, however, has been raised as to whether stereo-
scopic stimuli might be more susceptible to cognitive influences such as
set and expectancy. But convincing evidence that such factors exert no
special influence on stereoscopic stimuli was provided by Staller, Lappin,
and Fox (1979, 1980) , who found that both physical and stereoscopic stimuli
are processed in the same way.

m In summary, stereoscopic stimuli formed from dynamic random element
stereogramis are an excellent vehicle for investigating the effect of depth
position on stimulus interaction. Large changes in apparent depth can
readily be made without introducing confounding (i.e., retinal) stimu-
lation. Further, data obtained from stereoscopic stimuli can be general-
ized to the interaction of conventional stimuli. These features make
stereoscopic stimuli the method of choice for the inquiry into the effect

* 2



of depth position described in subsequent sections.

I Multiple Contour Interaction: Destructive interference at the threshold
level

i One of the most extensively investigated instances of destructive
interference at threshold is visual metacontrast masking, wherein a

slightly above threshold transient test stimulus is presented in close
temporal and spatial proximity to a masking stimulus. Presentation of
the mask after presentation of the test (backward masking) or before the
test (forward masking) substantially raises the threshold of the test
relative to the threshold obtained when the test is presented alone. The
specific stimulus conditions that influence forward and backward masking
are well-known and several well-articulated theoretical models have been
developed. This research effort, however, has dealt exclusively with twoIdimensions, X and Y; the Z-axis value of both masking and test stimuli
has remained the same. Since masking has been extensively studied in two
dimensions, it is an ideal phenomenon for investigating the effect of dif-
ferences in apparent depth position of test and mask. Such an investi-
gation was carried out in experiments using test and mask configured from
random element stereograms by Fox and Lehmkuhle (1978) and Lehmkuhle and

Fox (1980). The main results of that investigation were as follows:

1. When test and mask had the same depth or Z-axis values, substan-
tial masking was obtained. Further, many of its spatial and temporal

I characteristics were similar to those associated with the masking of phys-
ical contours. This similarity supports the view that stereoscopic stim-
uli are functionally equivalent to physical stimuli.

2. Forward masking occurred over a temporal range approximately
three times that found during the masking of physical stimuli. This is
consistent with other data that indicate the temporal response in stereop-
sis is relatively slow compared to nonstereoscopic stimulation.

3. Placing test and mask at different depths had a substantial ef-
fect on the magnitude of masking. When the test occupied a depth position
that placed it in front of the mask and closer to the observer, masking
decreased as a monotonic function of increases in depth between the test
and the mask. When the relative depth positions were reversed and the test
form was located behind the mask and further from the observer, masking was
enhanced. The asymmetrical effect of depth position on masking was a new
and unexpected observation that was termed the "front effect".

4. It was hypothesized that the front effect might reflect a bias
of the visual system to give preferential treatment to the stimulus that
is in front of another and closer to the observer.

Multiple Contour Interaction: Destructive interference under suprathreshold
I conditions

In this series of experiments, described in Fox and Patterson
(1980), the effect of depth separation on lateral interference was

' • examined. Lateral interference refers to the inhibitory interaction
among spatially adjacent suprathreshold stimuli, as for example,3 that which occurs in strings of alphanumeric symbols. Interference
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was produced by a continuously present suprathreshold circular stimulus
whose contours surrounded a test stimulus. The effect of the interfering
stimulus on the test stimulus was defined by two indices: (a) forced-
choice recognition threshold of the test stimulus in the presence and
absence of the interfering stimulus, and (b) ratings of the clarity of
the test stimulus while it was continuously visible. The main results
were as follows:

1. When both interfering and test stimuli were in the same depth
plane, considerable interference was obtained.

2. Increases in the distance between the inner contour of the inter-
fering stimulus and the outer contour of the test stimulus produced a
monotonic decline in interference. This is consistent with the hypothesis
advanced by Fox and Lehmkuhle that the inhibitory interaction seen in the
front effect occurs only when stimuli are spatially close and have poten-
tially competing visual directions.

3. Separation in depth of the interfering and test stimuli had a
substantial effect on the magnitude of interference. The effect was asym-
metrical and followed the pattern of the front effect described earlier.
This outcome indicates that the front effect is not restricted to the
transient threshold level stimulation associated with visual masking.

Multiple Contour Interaction: Distortive interference

The previous experiments demonstrated that depth position exerted a
strong influence on destructive interactions. Whether this influence
would apply to distortive interactions was the experimental question that

i was pursued later. The stimulus configuration chosen as a clear example
of distortive interaction was one in which a change in the apparent length
of line segments is induced when they, are placed within the arms of an
acute angle. Such a distortion occurs in many natural situations invol-
ving linear perspective gradients and, within the context of research in
geometric visual illusions, it is known as the Ponzo illusion. As de-
scribed by Fox and Patterson (1981a), the inducing triangle and the test
lines enclosed within it were formed from dynamic random element stereo-
grams, and the relative depth positions of the triangle and the lines
varied. The main results were as follows:

I 1. When all contours were in the same depth plane, substantial dis-
tortion occurred of the same order of magnitude as that observed for
physical contours. This similarity in magnitude supports the hypothesis
that stereoscopic contours are functionally equivalent to their physical
counterparts.

2. When the depth planes of the triangle and the test lines were
varied, and the lines appeared in depth planes in front of the triangle,
distortion decreased as a monotonic function of the depth difference be-
tween triangle and lines. When the depth positions were reversed, and
the triangle appeared in a depth plane in front of the lines, distortion
tended to increase. This pattern of results was virtually identical to
that observed for the front effect.

Overall, the results support two general conclusions. First, depth
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position appears to have a substantial effect on all classes of inter-
actions. Second, the pattern of that influence as defined by the front
effect appears to be a very general characteristic of depth position.

Effect of the Tilted Vertical Horopter

The previous experiments dealt with the effect of depth position on
the interactions among stimuli and the asymmetrical nature of that effect.
The experiments in this section examined an asymmetrical effect of 3-dimen-
sional space itself on all stimuli within it. Recent research has sug-
gested that the vertical dimension, or horopter, of visual space does not
coincide with the gravitational vertical but tilts away from the observer,
with the degree of tilt varying with observation distance. One consequence
of the tilt would be to differentially bias the processing of stimuli above
and below the horizontal line of fixation. Stimuli with crossed disparity
located above horizontal fixation would be relatively more perceptible
than those with crossed disparity below fixation. The characteristics of
this tilt were investigated in five experiments that are described in Fox
and Patterson (1981b). The main results were as follows:

1. Perceptibility of stimuli, defined in terms of changes in forced-
choice recognition thresholds, did vary as a function of their location
relative to the horizontal line of fixation: Stimuli above fixation had
lower thresholds than those below it. This result is consistent with
the hypothesis that the vertical horopter is tilted away from the observer.

2. The bias, or asymmetry, could be reversed by either physically
tilting the visual display, or by changing the relative disparity between
the fixation stimulus and the test stimuli. Theoretically, these results
support the hypothesis that the vertical horopter remains tilted in a
fixed position despite changes in physical tilt or in the location of the
fixation stimulus. Empirically, the results suggest techniques that could
be used to correct or compensate for the asymmetry.

3. The asymmetry does not seem to change the apparent size of objects
as a function of their position (i.e., above and below fixation) in the
display, nor did the depth relationships seem to require maintaining a
fixed position of the head and eyes.

Overall, the results indicate that the tilted horopter, and its at-
tendant effects on the processing of visual stimuli, is an intrinsic
property of all stereoscopic and 3-dimensional displays.
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